Skip to content Skip to navigation

Interaction of Light and Matter

Brongersma's research focuses on the fabrication and characterization of nanometer-size electronic and optical devices. The ability to engineer materials at the atomic level has opened myriad possibilities for the advancement of technologies that impact the areas of semiconductors, telecommunications, chemistry, and pharmaceuticals. His current research is aimed at the development of Si-based microphotonic functionality and plasmonic devices that can manipulate the flow of light at the nanoscale.

Cui studies nanoscale phenomena and their applications broadly defined. Research Interests include nanocrystal and nanowire synthesis and self-assembly, electron transfer and transport in nanomaterials and at the nanointerface, nanoscale electronic and photonic devices, batteries, solar cells, microbial fuel cells, water filters and chemical and biological sensors.

My group develops numerical methods and theories of photon-based spectroscopies of strongly correlated materials. The goal of this research is to understand electron dynamics via a combination of analytical theory and numerical simulations to provide insight into new quantum materials and how to better use them in energy-related applications.  My group carries out numerical simulations on high-performance CPU and GPU mid-range computing clusters and supercomputers.

Dr. Kelly is a consulting Professor in the Department of Materials Science and Engineering at Stanford. He has over 30 years experience in developing sensors and spectroscopic instruments used to study a wide variety of organic and inorganic surface phenomena. He has published widely, and holds numerous patents in the fields of electron optics, thin film synthesis, and electron spectrometers. He will participate in the CCNE-TR program by assisting in the development of biosensors, and by evaluating their performance using X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and other surface sensitive techniques.

The Lee group’s research involves studies of novel electronic and magnetic materials in single crystalline form. The goal is to understand the properties of correlated electron systems and quantum spin systems, with an eye toward discovering new materials or new physical phenomena. Such materials represent a major challenge to our present understanding of condensed matter physics, as they consist of many quantum particles which strongly interact with each other. The delicate interplay between the constituents of these systems (involving the magnetic, charge, orbital, and lattice degrees of freedom) leads to a variety of exotic phases, a famous example of which is high-Tc superconductivity. Specifically, the Lee group seeks to develop a deeper understanding of quantum materials through research activities involving neutron scattering, x-ray scattering, and crystal growth. We are particularly interested in novel states such as quantum spin liquids, exotic superconductivity, and topological phases of matter.

My academic career at Stanford has been focused on research efforts to understand the electronic properties of semiconductor surfaces and interfaces on an atomic scale using synchrotron radiation of importance for the development of modern electronic devices. I have taken a great interest in the development of synchrotron radiation and free electron laser facilities and instrumentation, and research policies for large scale facilities. I have been (and still am) a member/chairperson of a large number of review and advisory committees.

Lindenberg's research is focused on probing the ultrafast dynamics and atomic-scale structure of materials on femtosecond and picosecond time-scales. X-ray techniques are combined with ultrafast laser techniques to provide a new way of taking snapshots of materials in motion. Current research is focused on the dynamics of phase transitions, ultrafast properties of nanoscale materials, photoelectrochemical charge transfer dynamics, and THz nonlinear spectroscopy.

McIntyre’s group performs research on nanostructured inorganic materials for applications in electronics, energy technologies and sensors.  He is best known for his work on metal oxide/semiconductor interfaces, ultrathin dielectrics, defects in complex metal oxide thin films, and nanostructured Si-Ge single crystals.  His research team synthesizes materials, characterizes their structures and compositions with a variety of advanced microscopies and spectroscopies, studies the passivation of their interfaces, and measures functional properties of devices.

Melosh's research is focused on developing methods to detect and control chemical processes on the nanoscale, to create materials that are responsive to their local environment. The research goal incorporates many of the hallmarks of biological adaptability, based on feedback control between cellular receptors and protein expression. Similar artificial networks may be achieved by fabricating arrays of nanoscale (<100 nm) devices that can detect and influence their local surroundings through ionic potential, temperature, mechanical motion, capacitance, or electrochemistry. These devices are particularly suited as 'smart' biomaterials, where multiple surface-cell interactions must be monitored and adjusted simultaneously for optimal cell adhesion and growth. Other interests include precise control over self-assembled materials, and potential methods to monitor the diagnostics of complicated chemical systems, such as the effect of drug treatments within patients.

Pianetta's research is directed towards understanding how the atomic and electronic structure of semiconductor interfaces impacts device technology. His research includes the development of new analytical tools for these studies based on the use of synchrotron radiation. Recent projects include the development of ultrasensitive methods to analyze trace impurities on the surface of silicon wafers at levels as low as 1e-6 monolayer (~1e8 atoms/cm2) and the use of various photoelectron spectroscopies (X-ray photoemission, NEXAFS, X-ray standing waves and photoelectron diffraction) to determine the bonding and atomic structure at the interface between silicon and different passivating layers.

The Salleo Research Group is interested in novel materials and processing techniques for large-area and flexible electronic/photonic devices as well as ultra-fast laser processing for electronics, photonics and biotechnology. We also study defects and structure/property relations of polymeric semiconductors, nano-structured and amorphous materials in thin films.

Professor Shen conducts fundamental and applied research on quantum matter. His primary interest is the physics of the “many”, where interactions among multiple constituencies give rise to novel properties not intrinsic to the individual components. His interest also includes ways to utilize the functionality of materials.  He sends electromagnetic waves to probe matter, including X-ray, ultra-violet, and microwave radiation from synchrotron, free-electron laser, and laboratory sources. Insights are gained through precision analysis of ejected particles, either photons or electrons. He also prepares materials and devices for his studies.

Optically controlled electron spins for fault-tolerant quantum computing architecture. Ultra-fast single qubit and two qubit gates based on semiconductor microcavity quantum dots and broadband optical pulses. Decoherence time increased by optical spin echo techniques. Entanglement distribution based on generation and detection of indistinguishable single photons.

Subscribe to Interaction of Light and Matter