Skip to content Skip to navigation


Cui studies nanoscale phenomena and their applications broadly defined. Research Interests include nanocrystal and nanowire synthesis and self-assembly, electron transfer and transport in nanomaterials and at the nanointerface, nanoscale electronic and photonic devices, batteries, solar cells, microbial fuel cells, water filters and chemical and biological sensors.

The research of my group interfaces with chemistry, physics, materials science, and biological and medical science. We are interested in solid state and soft biological materials that have well-defined atomic structures. Our work is in the areas of materials chemistry, solid state chemistry and physics, scanning probe microscopy, molecular electronics, novel chemical and biochemical sensors and nanomaterial based biological transporters and carriers for drug, DNA and protein delivery and novel therapeutics applications of nanomaterials.

Professor Doniach’s research group uses scattering of synchrotron X-rays from electron storage rings at SLAC and at the Argonne National Laboratory to study changes in the conformation of molecules as their solvent environments are changed. The research also involves computer simulations of the dynamics and energetic of the resulting changes. Recent advances in the biology of DNA have shown that a very large part of the genome in eukaryotes codes for small RNA molecules that appear to be central to the way the genes (coding for proteins) are put together. Doniach’s group is currently studying structural changes that occur when some small functional RNAs turn on and off gene expression (riboswitches) without needing to involve protein transcription factors.

Primary research interests are the dynamics of evolutionary processes. These include theoretical work on general issues and models in evolutionary dynamics, especially quantitative aspects, collaborations with experimental groups on laboratory evolution of microbes and on field studies of microbial diversity, improved methods for analysis of DNA sequence data to understand variations, and repertoire and dynamics of the immune system. Dynamics of cellular processes is also an active interest. Some collaborations with experimental neuroscience groups are being carried out.

Heilshorn's interests include biomaterials in regenerative medicine, engineered proteins with novel assembly properties, microfluidics and photolithography of proteins, and synthesis of materials to influence stem cell differentiation. Current projects include creating in vitro circuits of neurons, tissue engineering for spinal cord regeneration, and designing scaffolds for cell transplantation in the treatment of Parkinson's disease and stroke.

Melosh's research is focused on developing methods to detect and control chemical processes on the nanoscale, to create materials that are responsive to their local environment. The research goal incorporates many of the hallmarks of biological adaptability, based on feedback control between cellular receptors and protein expression. Similar artificial networks may be achieved by fabricating arrays of nanoscale (<100 nm) devices that can detect and influence their local surroundings through ionic potential, temperature, mechanical motion, capacitance, or electrochemistry. These devices are particularly suited as 'smart' biomaterials, where multiple surface-cell interactions must be monitored and adjusted simultaneously for optimal cell adhesion and growth. Other interests include precise control over self-assembled materials, and potential methods to monitor the diagnostics of complicated chemical systems, such as the effect of drug treatments within patients.

Wang is engaged in the research of magnetic nanotechnology, biosensors, spintronics, integrated inductors and information storage. He uses modern thin-film growth techniques and lithography to engineer new electromagnetic materials and devices and to study their behavior at nanoscale and at very high frequencies. His group is investigating magnetic nanoparticles, high saturation soft magnetic materials, giant magnetoresistance spin valves, magnetic tunnel junctions, and spin electronic materials, with applications in cancer nanotechnology, in vitro diagnostics, rapid radiation triage, spin-based information processing, efficient energy conversion and storage, and extremely high-density magnetic recording.

Subscribe to Bio-materials