Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4
Yuanbo Zhang - Fudan University
Event Details:
Location
Stanford University
476 Lomita Mall
Room 115
Stanford, CA 95305
United States
In a magnetic topological insulator, the interplay of nontrivial band topology and magnetic order gives rise to intriguing states of matter, most notably exemplified by quantum anomalous Hall (QAH) insulators and axion insulators. These magnetic topological insulators are typically obtained by doping magnetic atoms into topological insulators. However, the presence of random magnetic dopants inevitably introduces disorders that impede further exploration of topological quantum effects within the material.
In this context, we focus on MnBi2Te4, a stoichiometric topological insulator that possesses an innate magnetic order. This layered van der Waals crystal is an antiferromagnet in the bulk form, with each layer exhibiting ferromagnetic order (a layer refers to a single structural unit in the out-of-plane direction). Atomically thin MnBi2Te4, however, becomes ferromagnetic when the sample has odd number of layers. We have observed the zero-field QAH effect in specimens composed of five layers. As we further gate the surface states of the QAH insulator under a strong magnetic field, conventional quantum Hall (QH) states emerge. I will discuss the intriguing array of topological states that arise from the intricate interplay between the QAH and QH effects.
Related Topics
Explore More Events
-
CMP Seminar
Anyons in van der Waals heterostructures
Andrea Young-Stanford University
476 Lomita Mall
Room 115
Stanford, CA 94305
United States -
CMP Seminar
The Triumphs and Suprises When Pushing 3D Topological Materials to 2D
Shuolong Yang-Stanford University
476 Lomita Mall
Room 115
Stanford, CA 94305
United States -
CMP Seminar
Coming soon
Vidya Madhavan-Stanford University
476 Lomita Mall
Room 115
Stanford, CA 94305
United States