Anomalous Hall Crystals in Graphene: interaction-driven Chern bands at zero magnetic field
Michael Zaletel - University of California, Berkeley
Event Details:
Location
Stanford University
486 Lomita Mall
McCullough Building, Room 115
Stanford, CA 94305
United States
Recent experiments have discovered that pentalayer-graphene subject to a moire superlattice spontaneously breaks time-reversal, resulting in a quantized anomalous Hall effect at zero magnetic field. At fractional filling, the material exhibits a zero-field fractional quantum Hall effect. In contrast to other moire-materials, the origin of Chern bands in this material is not so clear. I will present a theoretical picture in which Chern bands arise from an “anomalous Hall crystal” stabilized primarily by interactions. So far this picture is supported primarily by mean-field calculations, so I’ll conclude with some open questions about how the AHC could be verified.
Related Topics
Explore More Events
-
CMP Seminar
Anyons in van der Waals heterostructures
Andrea Young-Stanford University
476 Lomita Mall
Room 115
Stanford, CA 94305
United States -
CMP Seminar
The Triumphs and Suprises When Pushing 3D Topological Materials to 2D
Shuolong Yang-Stanford University
476 Lomita Mall
Room 115
Stanford, CA 94305
United States -
CMP Seminar
Coming soon
Vidya Madhavan-Stanford University
476 Lomita Mall
Room 115
Stanford, CA 94305
United States